js算法_八皇后问题的JavaScript解法

更新日期: 2018-12-29阅读量: 1667标签: 算法

关于八皇后问题的 JavaScript 解法,总觉得是需要学习一下算法的,哪天要用到的时候发现真不会就尴尬了


背景

八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上

八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为 n×n ,而皇后个数也变成n 。当且仅当n = 1或n ≥ 4时问题有解


盲目的枚举算法

通过N重循环,枚举满足约束条件的解(八重循环代码好多,这里进行四重循环),找到四个皇后的所有可能位置,然后再整个棋盘里判断这四个皇后是否会直接吃掉彼此,程序思想比较简单

function check1(arr, n) {
    for(var i = 0; i < n; i++) {
        for(var j = i + 1; j < n; j++) {
            if((arr[i] == arr[j]) || Math.abs(arr[i] - arr[j]) == j - i) {
                return false;
            }
        }
    }
    return true;
}
function queen1() {
    var arr = [];

    for(arr[0] = 1; arr[0] <= 4; arr[0]++) {
        for(arr[1] = 1; arr[1] <= 4; arr[1]++) {
            for(arr[2] = 1; arr[2] <= 4; arr[2]++) {
                for(arr[3] = 1; arr[3] <= 4; arr[3]++) {
                    if(!check1(arr, 4)) {
                        continue;
                    } else {
                        console.log(arr);
                    }
                }
            }
        }
    }
}

queen1();
//[ 2, 4, 1, 3 ]
//[ 3, 1, 4, 2 ]

关于结果,在 4*4 的棋盘里,四个皇后都不可能是在一排, arr[0] 到 arr[3] 分别对应四个皇后,数组的下标与下标对应的值即皇后在棋盘中的位置


回溯法

『走不通,就回头』,在适当节点判断是否符合,不符合就不再进行这条支路上的探索

function check2(arr, n) {
    for(var i = 0; i <= n - 1; i++) {
        if((Math.abs(arr[i] - arr[n]) == n - i) || (arr[i] == arr[n])) {
            return false;
        }
    }
    return true;
}

function queen2() {
    var arr = [];

    for(arr[0] = 1; arr[0] <= 4; arr[0]++) {
        for(arr[1] = 1; arr[1] <= 4; arr[1]++) {
            if(!check2(arr, 1)) continue; //摆两个皇后产生冲突的情况
            for(arr[2] = 1; arr[2] <= 4; arr[2]++) {
                if(!check2(arr, 2)) continue; //摆三个皇后产生冲突的情况
                for(arr[3] = 1; arr[3] <= 4; arr[3]++) {
                    if(!check2(arr, 3)) {
                        continue;
                    } else {
                        console.log(arr);
                    }
                }
            }
        }
    }
}

queen2();
//[ 2, 4, 1, 3 ]
//[ 3, 1, 4, 2 ]


非递归回溯法

算法框架

while(k > 0 『有路可走』 and 『未达到目标』) { // k > 0 有路可走
    if(k > n) { // 搜索到叶子节点
        // 搜索到一个解,输出
    } else {
        //a[k]第一个可能的值
        while(『a[k]在不满足约束条件且在搜索空间内』) {
            // a[k]下一个可能的值
        }
        if(『a[k]在搜索空间内』) {
            // 标示占用的资源
            // k = k + 1;
        } else {
            // 清理所占的状态空间
            // k = k - 1;
        }
    }
}

具体代码如下,最外层while下面包含两部分,一部分是对当前皇后可能值的遍历,另一部分是决定是进入下一层还是回溯上一层

function backdate(n) {
    var arr = [];

    var k = 1; // 第n的皇后
    arr[0] = 1;

    while(k > 0) {

        arr[k-1] = arr[k-1] + 1;
        while((arr[k-1] <= n) && (!check2(arr, k-1))) {
            arr[k-1] = arr[k-1] + 1;
        }
        // 这个皇后满足了约束条件,进行下一步判断

        if(arr[k-1] <= n) {
            if(k == n) { // 第n个皇后
                console.log(arr);
            } else {
                k = k + 1; // 下一个皇后
                arr[k-1] = 0;
            }
        } else {
            k = k - 1; // 回溯,上一个皇后
        }
    }
}

backdate(4);
//[ 2, 4, 1, 3 ]
//[ 3, 1, 4, 2 ]


递归回溯法

递归调用大大减少了代码量,也增加了程序的可读性

var arr = [], n = 4;
function backtrack(k) {
    if(k > n) {
        console.log(arr);
    } else {
        for(var i = 1;i <= n; i++) {
            arr[k-1] = i;
            if(check2(arr, k-1)) {
                backtrack(k + 1);
            }
        }
    }
}

backtrack(1);
//[ 2, 4, 1, 3 ]
//[ 3, 1, 4, 2 ]


华而不实的amb

什么是 amb ?给它一个数据列表,它能返回满足约束条件的成功情况的一种方式,没有成功情况就会失败,当然,它可以返回所有的成功情况。笔者写了上面那么多的重点,就是为了在这里推荐这个amb算法,它适合处理简单的回溯场景,很有趣,让我们来看看它是怎么工作的

首先来处理一个小问题,寻找相邻字符串:拿到几组字符串数组,每个数组拿出一个字符串,前一个字符串的末位字符与后一个字符串的首位字符相同,满足条件则输出这组新取出来的字符串

ambRun(function(amb, fail) {

    // 约束条件方法
    function linked(s1, s2) {
        return s1.slice(-1) == s2.slice(0, 1);
    }

    // 注入数据列表
    var w1 = amb(["the", "that", "a"]);
    var w2 = amb(["frog", "elephant", "thing"]);
    var w3 = amb(["walked", "treaded", "grows"]);
    var w4 = amb(["slowly", "quickly"]);

    // 执行程序
    if (!(linked(w1, w2) && linked(w2, w3) && linked(w3, w4))) fail();

    console.log([w1, w2, w3, w4].join(' '));
    // "that thing grows slowly"
});

看起来超级简洁有没有!不过使用的前提是,你不在乎性能,它真的是很浪费时间!

下面是它的 JavaScript 实现,有兴趣可以研究研究它是怎么把回溯抽出来的

function ambRun(func) {
    var choices = [];
    var index;

    function amb(values) {
        if (values.length == 0) {
            fail();
        }
        if (index == choices.length) {
            choices.push({i: 0,
                count: values.length});
        }
        var choice = choices[index++];
        return values[choice.i];
    }

    function fail() { throw fail; }

    while (true) {
        try {
            index = 0;
            return func(amb, fail);
        } catch (e) {
            if (e != fail) {
                throw e;
            }
            var choice;

            while ((choice = choices.pop()) && ++choice.i == choice.count) {}
            if (choice == undefined) {
                return undefined;
            }
            choices.push(choice);
        }
    }
}

以及使用 amb 实现的八皇后问题的具体代码

ambRun(function(amb, fail){
    var N = 4;
    var arr = [];
    var turn = [];
    for(var n = 0; n < N; n++) {
        turn[turn.length] = n + 1;
    }
    while(n--) {
        arr[arr.length] = amb(turn);
    }
    for (var i = 0; i < N; ++i) {
        for (var j = i + 1; j < N; ++j) {
            var a = arr[i], b = arr[j];
            if (a == b || Math.abs(a - b) == j - i) fail();
        }
    }
    console.log(arr);
    fail();
});


八皇后问题的JavaScript解法

这是八皇后问题的JavaScript解法,整个程序都没用for循环,都是靠递归来实现的,充分运用了Array对象的map, reduce, filter, concat, slice方法

'use strict';
var queens = function (boarderSize) {
  // 用递归生成一个start到end的Array
  var interval = function (start, end) {
    if (start > end) { return []; }
    return interval(start, end - 1).concat(end);
  };
  // 检查一个组合是否有效
  var isValid = function (queenCol) {
    // 检查两个位置是否有冲突
    var isSafe = function (pointA, pointB) {
      var slope = (pointA.row - pointB.row) / (pointA.col - pointB.col);
      if ((0 === slope) || (1 === slope) || (-1 === slope)) { return false; }
      return true;
    };
    var len = queenCol.length;
    var pointToCompare = {
      row: queenCol[len - 1],
      col: len
    };
    // 先slice出除了最后一列的数组,然后依次测试每列的点和待测点是否有冲突,最后合并测试结果
    return queenCol
      .slice(0, len - 1)
      .map(function (row, index) {
        return isSafe({row: row, col: index + 1}, pointToCompare);
      })
      .reduce(function (a, b) {
        return a && b;
      });
  };
  // 递归地去一列一列生成符合规则的组合
  var queenCols = function (size) {
    if (1 === size) {
      return interval(1, boarderSize).map(function (i) { return [i]; });
    }
    // 先把之前所有符合规则的列组成的集合再扩展一列,然后用reduce降维,最后用isValid过滤掉不符合规则的组合
    return queenCols(size - 1)
      .map(function (queenCol) {
        return interval(1, boarderSize).map(function (row) {
          return queenCol.concat(row);
        });
      })
      .reduce(function (a, b) {
        return a.concat(b);
      })
      .filter(isValid);
  };
  // queens函数入口
  return queenCols(boarderSize);
};

console.log(queens(8));
// 输出结果:
// [ [ 1, 5, 8, 6, 3, 7, 2, 4 ],
//   [ 1, 6, 8, 3, 7, 4, 2, 5 ],
//   ...
//   [ 8, 3, 1, 6, 2, 5, 7, 4 ],
//   [ 8, 4, 1, 3, 6, 2, 7, 5 ] ]


PS:延伸的N皇后问题
当 1848 年国际象棋玩家 Max Bezzel 提出八皇后问题(eight queens puzzle)时,他恐怕怎么也想不到,100 多年以后,这个问题竟然成为了编程学习中最重要的必修课之一。八皇后问题听上去非常简单:把八个皇后放在国际象棋棋盘上,使得这八个皇后互相之间不攻击(国际象棋棋盘是一个 8×8 的方阵,皇后则可以朝横竖斜八个方向中的任意一个方向走任意多步)。虽然这个问题一共有 92 个解,但要想徒手找出一个解来也并不容易。下图就是其中一个解:


八皇后问题有很多变种,不过再怎么也不会比下面这个变种版本更帅:请你设计一种方案,在一个无穷大的棋盘的每一行每一列里都放置一个皇后,使得所有皇后互相之间都不攻击。具体地说,假设这个棋盘的左下角在原点处,从下到上有无穷多行,从左到右有无穷多列,你需要找出一个全体正整数的排列方式 a1, a2, a3, … ,使得当你把第一个皇后放在第一行的第 a1 列,把第二个皇后放在第二行的第 a2 列,等等,那么任意两个皇后之间都不会互相攻击。


下面给出一个非常简单巧妙的构造。首先,我们给出五皇后问题的一个解。并且非常重要的是,其中一个皇后占据了最左下角的那个格子。


接下来,我们把五皇后的解扩展到 25 皇后,而依据则是五皇后本身的布局:


样一来,同一组里的五个皇后显然不会互相攻击,不同组的皇后之间显然也不会互相攻击,这便是一个满足要求的 25 皇后解了。注意到,在扩展之后,之前已经填好的部分并未改变。
再接下来怎么办呢?没错,我们又把 25 皇后的解复制成五份,再次按照五皇后的布局来排列,从而扩展到 125 皇后!


像这样不断地根据已填的部分,成倍地向外扩展,便能生成一个无穷皇后问题的解  


站长推荐

1.云服务推荐: 国内主流云服务商,各类云产品的最新活动,优惠券领取。地址:阿里云腾讯云华为云

链接: https://www.fly63.com/article/detial/1721

JS中常用的排序方法

通过相邻数据元素的交换,逐步将待排序序列变为有序序列,如果前面的数据大于后面的数据,就将两值进行交换,将数据进行从小到大的排序,这样对数组的第0个数据到N-1个数据进行一次遍历后

迭代算法

迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,在解决问题时总是重复利用一种方法。与迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题

js算法_js判断一个字符串是否是回文字符串

什么是回文字符串?即字符串从前往后读和从后往前读字符顺序是一致的。例如:字符串aba,从前往后读是a-b-a;从后往前读也是a-b-a

JavaScript十大排序必修算法

冒泡排序通过相邻元素的比较和交换,使得每一趟循环都能找到未有序数组的最大值或最小值,双向冒泡普通的冒泡排序在一趟循环中只能找出一个最大值或最小值,双向冒泡则是多一轮循环既找出最大值也找出最小

用 JavaScript 学习算法复杂度

在后面的例子中,我将引用这两个数组,一个包含 5 个元素,另一个包含 50 个元素。我还会用到 JavaScript 中方便的 performance API 来衡量执行时间的差异

算法工程师的危机

AI概念在2015年起就红得发紫,不论是送外卖,搞团购,卖车,或是推荐莆田医院的,是个公司都会标榜自己是搞人工智能的。在21世纪的第二个十年,计算机专业相关的学生不说自己是搞AI算法的,同学聚会都抬不起头,相亲机会都变少了

Tracking.js_ js人脸识别前端代码/算法框架

racking.js 是一个独立的JavaScript库,实现多人同时检测人脸并将区域限定范围内的人脸标识出来,并保存为图片格式,跟踪的数据既可以是颜色,也可以是人,也就是说我们可以通过检测到某特定颜色,或者检测一个人体/脸的出现与移动,来触发JavaScript 事件。

Vue2.x的diff算法记录

为什么在Vue3.0都已经出来这么久了我还要写这篇文章,因为目前自己还在阅读Vue2.x的源码,感觉有所悟。作为一个刚毕业的新人,对Vue框架的整体设计和架构突然有了一点认知,所以才没头没尾地突然写下了diff算法。

JS数据结构与算法_链表

链表更加像是数组。链表和数组都是用于存储有序元素的集合,但有几点大不相同,链表的实现不像之前介绍的栈和队列一般依赖于数组(至少我们目前是这样实现的),它必须自己构建类并组织逻辑实现。我们先创建一个Node类

Js实现插入排序

插入排序是一种非常简单的算法,最适合大部分已经被排好序的数据。在开始之前,通过可视化演示算法如何运作一个好主意。你可以参考前面的动画来了解插入排序的工作原理。

点击更多...

内容以共享、参考、研究为目的,不存在任何商业目的。其版权属原作者所有,如有侵权或违规,请与小编联系!情况属实本人将予以删除!