用 JavaScript 学习算法复杂度

时间: 2020-01-06阅读: 64标签: 算法

在本文中,我们将探讨 “二次方” 和 “n log(n)” 等术语在算法中的含义。

在后面的例子中,我将引用这两个数组,一个包含 5 个元素,另一个包含 50 个元素。我还会用到 JavaScript 中方便的 performance API 来衡量执行时间的差异。

const smArr = [5, 3, 2, 35, 2];

const bigArr = [5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2, 5, 3, 2, 35, 2];


什么是 Big O 符号?

Big O 表示法是用来表示随着数据集的增加,计算任务难度总体增长的一种方式。尽管还有其他表示法,但通常 big O 表示法是最常用的,因为它着眼于最坏的情况,更容易量化和考虑。最坏的情况意味着完成任务需要最多的操作次数;如果你在一秒钟内就能恢复打乱魔方,那么你只拧了一圈的话,不能说自己是做得最好的。

当你进一步了解算法时,就会发现这非常有用,因为在理解这种关系的同时去编写代码,就能知道时间都花在了什么地方。

当你了解更多有关 Big O 表示法的信息时,可能会看到下图中不同的变化。我们希望将复杂度保持在尽可能低的水平,最好避免超过 O(n)。



O(1)

这是理想的情况,无论有多少个项目,不管是一个还是一百万个,完成的时间量都将保持不变。执行单个操作的大多数操作都是 O(1)。把数据写到数组、在特定索引处获取项目、添加子元素等都将会花费相同的时间量,这与数组的长度无关。

const a1 = performance.now();
smArr.push(27);
const a2 = performance.now();
console.log(`Time: ${a2 - a1}`); // Less than 1 Millisecond


const b1 = performance.now();
bigArr.push(27);
const b2 = performance.now();
console.log(`Time: ${b2 - b1}`); // Less than 1 Millisecond


O(n)

在默认情况下,所有的循环都是线性增长的,因为数据的大小和完成的时间之间存在一对一的关系。所以如果你有 1,000 个数组项,将会花费的 1,000 倍时间。

const a1 = performance.now();
smArr.forEach(item => console.log(item));
const a2 = performance.now();
console.log(`Time: ${a2 - a1}`); // 3 Milliseconds

const b1 = performance.now();
bigArr.forEach(item => console.log(item));
const b2 = performance.now();
console.log(`Time: ${b2 - b1}`); // 13 Milliseconds


O(n^2)

指数增长是一个陷阱,我们都掉进去过。你是否需要为数组中的每个项目找到匹配对?将循环放入循环中是一种很好的方式,可以把 1000 个项目的数组变成一百万个操作搜索,这将会使你的浏览器失去响应。与使用双重嵌套循环进行一百万次操作相比,最好在两个单独的循环中进行 2,000 次操作。

const a1 = performance.now();
smArr.forEach(() => {
    arr2.forEach(item => console.log(item));
});
const a2 = performance.now();
console.log(`Time: ${a2 - a1}`); // 8 Milliseconds


const b1 = performance.now();
bigArr.forEach(() => {
    arr2.forEach(item => console.log(item));
});
const b2 = performance.now();
console.log(`Time: ${b2 - b1}`); // 307 Milliseconds


O(log n)

我认为关于对数增长最好的比喻,是想象在字典中查找像 “notation” 之类的单词。你不会在一个词条一个词条的去进行搜索,而是先找到 “N” 这一部分,然后是 “OPQ” 这一页,然后按字母顺序搜索列表直到找到匹配项。

通过这种“分而治之”的方法,找到某些内容的时间仍然会因字典的大小而改变,但远不及 O(n) 。因为它会在不查看大部分数据的情况下逐步搜索更具体的部分,所以搜索一千个项目可能需要少于 10 个操作,而一百万个项目可能需要少于 20 个操作,这使你的效率最大化。

在这个例子中,我们可以做一个简单的 快速排序

const sort = arr => {
  if (arr.length < 2) return arr;

  let pivot = arr[0];
  let left = [];
  let right = [];

  for (let i = 1, total = arr.length; i < total; i++) {
    if (arr[i] < pivot) left.push(arr[i]);
    else right.push(arr[i]);
  };
  return [
    ...sort(left),
    pivot,
    ...sort(right)
  ];
};
sort(smArr); // 0 Milliseconds
sort(bigArr); // 1 Millisecond


O(n!)

最糟糕的一种可能性是析因增长。最经典的例子就是旅行的推销员问题。如果你要在很多距离不同的城市之间旅行,如何找到在所有城市之间返回起点的最短路线?暴力方法将是检查每个城市之间所有可能的路线距离,这是一个阶乘并且很快就会失控。

由于这个问题很快会变得非常复杂,因此我们将通过简短的递归函数演示这种复杂性。这个函数会将一个数字去乘以函数自己,然后将数字减去1。阶乘中的每个数字都会这样计算,直到为 0,并且每个递归层都会把其乘积添加到原始数字中。

阶乘只是从 1 开始直至该数字的乘积。那么 6!是 1x2x3x4x5x6 = 720。

const factorial = n => {
  let num = n;

  if (n === 0) return 1
  for (let i = 0; i < n; i++) {
    num = n * factorial(n - 1);
  };

  return num;
};
factorial(1); // 2 Milliseconds
factorial(5); // 3 Milliseconds
factorial(10); // 85 Milliseconds
factorial(12); //  11,942 Milliseconds

我原本打算显示 factorial(15),但是 12 以上的值都太多,并且使页面崩溃了,这也证明了为什么需要避免这种情况。


结束语

我们需要编写高性能的代码似乎是一个不争得事实,但是我敢肯定,几乎每个开发人员都创建过至少两重甚至三重嵌套循环,因为“它确实有效”。Big O 表示法在表达和考虑复杂性方面是非常必要的,这是我们从未有过的方式。

作者:Joshua Hall
翻译:疯狂的技术宅
原文:https://alligator.io/



吐血推荐

1.站长广告联盟: 整理了目前主流的广告联盟平台,如果你有流量,可以作为参考选择适合你的平台点击进入...

2.休闲娱乐: 直播/交友    优惠券领取   网页游戏   H5游戏

链接: http://www.fly63.com/article/detial/7427

Js常用的算法教程

Js常用的算法教程 深度广度、冒泡选择、防抖节流等,函数在调用倒计时n时间内没有重复调用,则执行函数,不然重新倒计时

js实现分解质因数

定义一个数组,用来存放因数; 定义数组里面数的位置的起始值0;定义分解质因数的函数;如果被分解的数为1、2、3,则直接存入数组,并返回结果

Leetcode 242 有效的字母异位词的三种解法

题目描述:给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。这个题目比较简单,属于一眼看过去就有思路的那种。我用了三种解法,你也尝试一些别的方法, 拓宽思路。

Js排列组合的实现

犹记得高中数学,组合表示C(m, n),意思为从集合m,选出n个数生成一项,总共有多少个项的可能?组合是无序的,排列是有序的。所以排列的项数量多于组合

Js找出数组中出现次数最多的元素

给定一个数组,找出数组中出现次数最多的元素。给定数组 nums = [3,1,2,1,3,4,3,5,3,6,3], 函数应该返回: 次数最多的元素为:3, 次数为:5

六种排序算法的Js实现

本文将介绍数据排序的基本算法和高级算法。这些算法都只依赖数组来存储数据。数组测试平台首先我们构造一个数组测试平台类,这些算法非常逼真地模拟了人类在现实生活中对数据的排序。

数据结构与算法之绪论

什么是数据结构?简单来说可以解释为:程序设计=数据结构+算法;主要是用来研究数据结构的关系,数据元素之间存在的一种或多种特定关系的集合;

JS排序算法:记数排序

计数排序是一个非基于比较的[排序算法],该算法于1954年由 Harold H. Seward 提出。 它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围), 快于任何比较排序算法。

RSA 背后的算法

随着科技发展,计算能力越来越强,特别是量子计算的兴起,我们对超大质数的位数要求也越来越高,512 bit 的 RSA 已经被破解,而 1024 bit 也已经摇摇欲坠,现阶段 2048 bit 长度还是安全的,可是未来,谁又知道呢?

一些常用的语音特征提取算法

语言是一种复杂的自然习得的人类运动能力。成人的特点是通过大约100块肌肉的协调运动,每秒发出14种不同的声音。说话人识别是指软件或硬件接收语音信号,识别语音信号中出现的说话人,然后识别说话人的能力

fly63.com版权所有,内容以共享、参考、研究为目的,不存在任何商业目的。其版权属原作者所有,如有侵权,请与小编联系!情况属实本人将予以删除!

文章投稿关于web前端网站点搜索站长推荐网站地图站长QQ:522607023

小程序专栏: 土味情话心理测试脑筋急转弯幽默笑话段子句子语录成语大全