关闭

js二叉树的遍历算法

时间: 2018-11-28阅读: 1538标签: 算法

二叉树的概念

二叉树是非常重要的数据结构,其中一棵树最上面的点称为根节点,如果一个节点下面连接多个节点,那么该节点称为父节点,下面的节点称为子节点,二叉树的每一个节点最多有2个子节点,一个节点子节点的个数称为度,二叉树每个节点的度只能是0,1,2中的一个,度为0的节点称为叶节点。


js二叉树的实现

js实现二叉树数据结构, 完成遍历、查找最大/小值、查找特定值以及删除节点的操作。  

//定义节点
class Node {
    constructor(data){
        this.root = this;
        this.data = data;
        this.left = null;
        this.right = null
    }
}
//创建二叉搜索树(BST))
class BinarySearchTree {
    constructor(){
    this.root = null
    }
    //插入节点
    insert(data){
        const newNode = new Node(data);
        const insertNode = (node,newNode) => {
            if (newNode.data < node.data){
                if(node.left === null){
                    node.left = newNode
                }else {
                    insertNode(node.left,newNode)
                }
            }else {
                if(node.right === null){
                    node.right = newNode
                }else{
                    insertNode(node.right,newNode)
                }

            }
        };
        if(!this.root){
            this.root = newNode
        }else {
            insertNode(this.root,newNode)

        }
    }
    //中序遍历
    inOrder(){
        let backs = [];
        const inOrderNode = (node,callback) => {
            if(node !== null){
                inOrderNode(node.left,callback);
                backs.push(callback(node.data));
                inOrderNode(node.right,callback)
            }
        };
        inOrderNode(this.root,callback);
        function callback(v){
            return v
        }
        return backs
    }
    //前序遍历
    preOrder(){
        let backs = [];
        const preOrderNode = (node,callback) => {
            if(node !== null){
                backs.push(callback(node.data));
                preOrderNode(node.left,callback);
                preOrderNode(node.right,callback)
            }
        };
        preOrderNode(this.root,callback);
        function callback(v){
            return v
        }
        return backs
    }
    //后序遍历
    postOrder(){
        let backs = [];
        const postOrderNode = (node,callback) => {
            if(node !== null){
                postOrderNode(node.left,callback);
                postOrderNode(node.right,callback);
                backs.push(callback(node.data))
            }
        };
        postOrderNode(this.root,callback);
        function callback(v){
            return v
        }
        return backs
    }
    //查找最小值
    getMin(node){
        const minNode = node => {
            return node? (node.left? minNode(node.left):node):null
        };
        return minNode( node || this.root)
    }
    //查找最大值
    getMax(node){
        const minNode = node => {
            return node? (node.right? minNode(node.right):node):null
        };
        return minNode(node || this.root)
    }
    //查找特定值
    find(data){
        const findNode = (node,data) => {
            if(node===null) return false;
            if(node.data===data) return node;
            return findNode((data < node.data)? node.left: node.right,data)
        };
        return findNode(this.root,data)

    }
    //删除节点
    remove(data){
        const removeNode = (node,data) => {
            if(node === null) return null;
            if(node.data === data){
                if(node.left === null && node.right === null) return null;
                if(node.left === null) return node.right;
                if(node.right === null) return node.left;
                if(node.left !==null && node.right !==null){
                let _node = this.getMin(node.right);
                node.data = _node.data;
                node.right = removeNode(node.right,data);
                return node
                }
            } else if(data < node.data){
                node.left=removeNode(node.left,data);
                return node
            } else {
                node.right=removeNode(node.right,data);
                return node
            }
        };
        return removeNode(this.root,data)
    }
}
 //创建BST
const tree = new BinarySearchTree();
tree.insert(11);
tree.insert(7);
tree.insert(5);
tree.insert(3);
tree.insert(9);
tree.insert(8);
tree.insert(10);
tree.insert(13);
tree.insert(12);
tree.insert(14);
tree.insert(20);
tree.insert(18);
tree.insert(25);
console.log(tree);
console.log(tree.root);
//中序遍历BST
console.log(tree.inOrder());
//前序遍历BST
console.log(tree.preOrder());
//后序遍历BST
console.log(tree.postOrder());
//搜索最小值
console.log(tree.getMin());
//搜索最大值
console.log(tree.getMax());
//查找特定值
console.log(tree.find(2));
console.log(tree.find(3));
console.log(tree.find(20));
//删除节点,返回新的二叉树,不改变原来的二叉树
console.log(tree.remove(11));
a=tree.remove(11);
console.log(a.root);
console.log(tree);


站长推荐

1.云服务推荐: 国内主流云服务商,各类云产品的最新活动,优惠券领取。地址:阿里云腾讯云华为云

2.广告联盟: 整理了目前主流的广告联盟平台,如果你有流量,可以作为参考选择适合你的平台点击进入

链接: http://www.fly63.com/article/detial/1440

关闭

js洗牌算法:javascript数组随机打乱顺序的实现方法

有一个数组,我们需要通过js对数组的元素进行随机排序,然后输出,这其实就是洗牌算法,首页需要从元素中随机取一个和第一元进行交换,然后依次类推,直到最后一个元素。

现在算法是新锐前端框架成功的重要因素

随着前端MVVM的流行,小型框架现在越来越难存活了!react, angular等打着大公司旗号的框架占了半壁江山,而avalon以其良好兼容性在国内份额不断上升。前端也与后端一样,遵循马太效应,强者愈强,弱者愈弱。最后只剩下两种框架

js求数组中的最大差值的方法总汇

有一个无序整型数组,如何求出这个数组中最大差值。(例如:无序数组1, 3, 63, 44最大差值是 63-1=62)。实现原理:遍历一次数组,找到最大值和最小值,返回差值

js算法_js判断一个字符串是否是回文字符串

什么是回文字符串?即字符串从前往后读和从后往前读字符顺序是一致的。例如:字符串aba,从前往后读是a-b-a;从后往前读也是a-b-a

JS数据结构与算法_集合&字典

集合set是一种包含不同元素的数据结构。集合中的元素成为成员。集合的两个最重要特性是:集合中的成员是无序的;集合中不允许相同成员存在,计算机中的集合与数学中集合的概念相同,有一些概念我们必须知晓:

RSA算法详解

这篇文章主要是针对一种最常见的非对称加密算法——RSA算法进行讲解。其实也就是对私钥和公钥产生的一种方式进行描述,RSA算法的核心就是欧拉定理,根据它我们才能得到私钥,从而保证整个通信的安全。

JS数据结构与算法_树

一个树结构包含一系列存在父子关系的节点。每个节点都有一个父节点(除了顶部的第一个节点)以及零个或多个子节点:关于数的深度和高度的问题,不同的教材有不同的说法

js算法-查找斐波纳契数列中第N个数

所谓的斐波纳契数列是指前2个数是 0 和 1 ,第 i 个数是第 i-1 个数和第i-2 个数的和。下面我们来用js获取菲波那契数列的第N个数为多少:递归、闭包+缓存、直接计算出该数列的值得数组,然后再从数组中取值 、直接使用数学表达式

Vue2.x的diff算法记录

为什么在Vue3.0都已经出来这么久了我还要写这篇文章,因为目前自己还在阅读Vue2.x的源码,感觉有所悟。作为一个刚毕业的新人,对Vue框架的整体设计和架构突然有了一点认知,所以才没头没尾地突然写下了diff算法。

原生js实现冒泡排序算法,javascript冒泡排序

javascript冒泡排序的实现,冒泡排序是一个非常常见的排序算法,对于一个数组,每趟排序时依次比较两个相邻的数,如果他们的顺序错误就交换两数位置。

点击更多...

内容以共享、参考、研究为目的,不存在任何商业目的。其版权属原作者所有,如有侵权或违规,请与小编联系!情况属实本人将予以删除!