JS实现快速排序算法

时间: 2021-05-17阅读: 384标签: 算法

思想

快速排序的基本思想是选择数组中的一个元素作为关键字,通过一趟排序,把待排序的数组分成两个部分,其中左边的部分比所有关键字小,右边的部分比所有关键字大。然后再分别对左右两边的数据作此重复操作,直到所有元素都有序,就得到了一个完全有序的数组。

来看一个例子,以数组[4, 5, 2, 7, 3, 1, 6, 8]为例,我们选中数组最左边的元素为关键字pivot


第一步从右侧开始,往左移动右指针,遇到8,6,都比4大,直到遇到1,比4小,故把1移动到最左边。右指针保持不动,开始移动左指针。


移动左指针,发现5比关键字pivot 4大,所以把5移动到刚才记录的右指针的位置,相当于把比pivot大的值都移动到右侧。然后开始移动右指针。


移动右指针,发现3比pivot小,故把3移动到刚才左指针记录的位置,开始移动左指针。


移动左指针,2比pivot小,再移动,发现7,7比pivot大,故把7放到右指针记录的位置,再次开始移动右指针。


移动右指针,发现两个指针重叠了,将pivot的值插入指针位置(相当于找到了pivot在排序完成后所在的确切位置)。此次排序结束。


一趟排序结束后,将重叠的指针位置记录下来,分别对左右两侧的子数组继续上面的操作,直到分割成单个元素的数组。所有操作完成之后,整个数组也就变成有序数组了。

动态图如下,动态图使用20个元素的无序数组来演示。其中灰色背景为当前正在排序的子数组,橙色为当前pivot,为方便演示,使用交换元素的方式体现指针位置。



js实现

代码如下:

const quickSort = (array)=>{
  quick(array, 0, array.length - 1)
}

const quick = (array, left, right)=>{
  if(left < right){
    let index = getIndex(array, left, right);
    quick(array, left, index-1)
    quick(array, index+1, right)
  }
}

const getIndex = (array, leftPoint, rightPoint)=>{
  let pivot = array[leftPoint];
  while(leftPoint < rightPoint){
    while(leftPoint < rightPoint && array[rightPoint] >= pivot) {
      rightPoint--;
    }
    array[leftPoint] = array[rightPoint]
    // swap(array, leftPoint, rightPoint) 			//使用swap,则与动态图演示效果完全一致
    while(leftPoint < rightPoint && array[leftPoint] <= pivot) {
      leftPoint++;
    }
    array[rightPoint] = array[leftPoint]
    // swap(array, leftPoint, rightPoint)
  }
  array[leftPoint] = pivot
  return leftPoint;
}

const swap = (array, index1, index2)=>{
  var aux = array[index1];
  array.splice(index1, 1, array[index2])
  array.splice(index2, 1, aux)
}

const createNonSortedArray = (size)=>{
  var array = new Array();
  for (var i = size; i > 0; i--) {
    //array.push(parseInt(Math.random()*100));
    array.push(i*(100/size));
    array.sort(function() {
      return (0.5-Math.random());
    });
  }
  return array;
}

var arr = createNonSortedArray(20);
quickSort(arr)
console.log(arr)	//[5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100]


时间复杂度

快速排序很明显用了分治的思想,关键在于选择的pivot,如果每次都能把数据平分成两半,这样递归树的深度就是logN,这样快排的时间复杂度为O(NlogN)。
而如果每次pivot把数组分成一部分空,一部分为所有数据,那么这时递归树的深度就是n-1,这样时间复杂度就变成了O(N^2)。

根据以上的时间复杂度分析,我们发现如果一个数据完全有序,那么使用咱们上面的快速排序算法就是最差的情况,所以怎么选择pivot就成了优化快速排序的重点了,如果继续使用上面的算法,那么我们可以随机选择pivot来代替数组首元素作为pivot的方式。

来自:https://www.cnblogs.com/EaVango/archive/2021/05/14/14769230.html

站长推荐

1.云服务推荐: 国内主流云服务商,各类云产品的最新活动,优惠券领取。地址:阿里云腾讯云华为云

链接: http://www.fly63.com/article/detial/10295

轻松搞定时间复杂度

通过学习本文,你可以掌握以下三点内容:为什么需要时间复杂度;时间复杂度怎么表示;怎样分析一段代码的时间复杂度,相信认真阅读过本文,面对一些常见的算法复杂度分析,一定会游刃有余

不懂算法,还想进大厂?做梦吧

学算法,刷题蛮干是不行的,需要遵循科学的方法。以下的经验技巧,对于算法新手,或大学没有搞过ACM,想利用业余时间提升算法能力的同学比较有帮助,对于算法高手和ACM大牛

程序员必知必会的10 大基础算法!

快速排序算法:快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个项目要Ο(nlogn)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(nlogn)算法更快

迭代算法

迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,在解决问题时总是重复利用一种方法。与迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题

最短编辑距离

1.第一行表示从ME到空字符所要删除的字符的所以情况 2.第一列表示从空字符到MY所需要插入字符的所有情况 3.斜箭头表示相同字符不需要替换,不相同字符所有替换次数的所有情况

indexOf实现引申出来的各种字符串匹配算法

我们在表单验证时,经常遇到字符串的包含问题,比如说邮件必须包含indexOf。我们现在说一下indexOf。这是es3.1引进的API ,与lastIndexOf是一套的。可以用于字符串与数组中。一些面试经常用问数组的indexOf是如何实现的

JavaScript字符串压缩_js实现字符串压缩

设计一种方法,通过给重复字符计数来进行基本的字符串压缩。例如,字符串 aabcccccaaa 可压缩为 a2b1c5a3 。而如果压缩后的字符数不小于原始的字符数,则返回原始的字符串。 可以假设字符串仅包括a-z的字母

前端Js排序算法:冒泡排序、 选择排序、快速排序

典型的排序方法,命名来自鱼呼吸时吹出的气泡,上层的气泡总是最大的。选择排序:顾名思义,每次都选择最小的,然后交换位置,快速排序思路:二分法,先找一个基数

js多叉树结构的数据,parent表示法转成children表示法

要求是将这个数组转成一个children表示法的对象,即从根节点开始,每个节点存有其子节点数组。转化效果如下(节点必须有个唯一标识符,以下id就是,并且转化前后其他属性保持不变,这里为了显示简洁没有加入其他属性。

JS排序算法:记数排序

计数排序是一个非基于比较的[排序算法],该算法于1954年由 Harold H. Seward 提出。 它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围), 快于任何比较排序算法。

点击更多...

内容以共享、参考、研究为目的,不存在任何商业目的。其版权属原作者所有,如有侵权或违规,请与小编联系!情况属实本人将予以删除!